Климатическая модель прогноза погоды

Справочная информация

ДокументыЗаконыИзвещенияУтверждения документовДоговораЗапросы предложенийТехнические заданияПланы развитияДокументоведениеАналитикаМероприятияКонкурсыИтогиАдминистрации городовПриказыКонтрактыВыполнение работПротоколы рассмотрения заявокАукционыПроектыПротоколыБюджетные организацииМуниципалитетыРайоныОбразованияПрограммыОтчетыпо упоминаниямДокументная базаЦенные бумагиПоложенияФинансовые документыПостановленияРубрикатор по темамФинансыгорода Российской Федерациирегионыпо точным датамРегламентыТерминыНаучная терминологияФинансоваяЭкономическаяВремяДаты2015 год2016 годДокументы в финансовой сферев инвестиционной

Что такое «нормальная» погода?

Климат обычно определяется тем, что является ожидаемой или «нормальной» погодой и традиционно интерпретируется в среднем периоде 30 лет. Неправильное представление, что погода становится серьезной проблемой

Чтобы обеспечить безопасность средств к существованию и жизни, важно, планировать и предвидеть изменения погоды. Иногда засуха и наводнения являются неизбежной частью нормального диапазона погоды для определенного района планеты

Климатология это наука об анализе климатических моделей для обеспечения понимания условий конкретного района с целью адаптации к окружающей обстановке.

Наука климатология изучает множество факторов, которые влияют на на окружающую среду. К ним относятся воды, атмосферы и геология. Климатология наука изучающая все эти вещи в течение времени, обычно 30-летнего цикла.

На  изменение климата влияют не только действия человека, но и другие факторы: сложная физика атмосферы, взаимодействие между воздухом и землей, а также между воздухом и водой, изменение количества льда, пустыни и леса, а также природные процессы, которые изменили климат за эти 4,5 миллиарда лет.

Строительная климатология 1999 и 2012 гг.: принципиальные отличия

Свод правил СП 131.13 330.2012 составлен с целью повышения уровня безопасности людей в зданиях и сооружениях и сохранности материальных ценностей в соответствии с Федеральным законом от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений», повышения уровня гармонизации нормативных требований с европейскими и международными нормативными документами, применения единых методов определения эксплуатационных характеристик и методов оценки. При разработке СП 131.13 330.2012 также учитывались требования Федерального закона от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании» и Федерального закона от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности».

Как и СНиП 23–01–99*, новый свод правил устанавливает климатические параметры, которые применяют при проектировании зданий и сооружений, систем отопления, вентиляции, кондиционирования, водоснабжения, при планировке и застройке городских и сельских поселений. При этом климатические параметры представлены в виде таблиц и схематических карт.

Значения климатических параметров для районов, отсутствующих в явном виде в таблицах климатологии, как и ранее, следует принимать равными значениям климатических параметров ближайшего к ним пункта, приведенного в таблице и расположенного в местности с аналогичными условиями. Для пунктов, не указанных в таблицах, расположенных в прибрежных районах морей и крупных водохранилищ и в местности с абсолютной отметкой более 500 м, а также удаленных от метеостанции более чем на 100 км, климатические параметры следует определять по запросам в НИИСФ РААСН, в Главную геофизическую обсерваторию им. А. И. Воейкова или в территориальные управления по гидрометеорологии и мониторингу окружающей среды Росгидромета. Об этом говорится в п.1 и п.2.1 СП 131.13 330.2012 соответственно.

С точки зрения содержания новой климатологии следует отметить, что в ней отсутствуют данные для стран СНГ.

В свод правил входят следующие таблицы:

  • Таблица 3.1. Климатические параметры холодного периода года.
  • Таблица 4.1. Климатические параметры теплого периода года.
  • Таблица 5.1. Средняя месячная и годовая температуры воздуха.
  • Таблица 6.1. Максимальная суточная амплитуда температуры воздуха в июле.
  • Таблица 7.1. Среднее месячное и годовое парциальное давление водяного пара.
  • Таблица 8.1. Значение суммарной солнечной радиации (прямой и рассеянной) на горизонтальную поверхность при безоблачном небе.
  • Таблица 9.1. Значение суммарной солнечной радиации (прямой и рассеянной) на вертикальную поверхность при безоблачном небе.
  • Таблица 10.1. Климатические параметры для проектирования отопления, вентиляции и кондиционирования.
  • Таблица 11.1. Значения средней и максимальной суточной амплитуды температуры наружного воздуха.
  • Таблица 12.1. Суточный ход рассеянной и суммарной освещенности горизонтальной поверхности в КЛК.
  • Таблица 13.1. Значения высоты солнца над горизонтом.

История

Гумбольдт высоко оценил работу Хосе де Акосты по исследованию в области метеорологии и физики и за многие его открытия удостоил звания одного из Основателей Геофизики. В его Истории () впервые появились соображения об изгибе изотермических линий и о распределении тепла в зависимости от широты, о направлении течений и многих физических явлений: различия климатов, активности вулканов, землетрясений, типы ветров и причины их возникновений.

В 1686 году Эдмунд Галлей после путешествия в Южное полушарие составил и опубликовал карту пассатов. Бенджамин Франклин — один из титанов XVIII столетия первым наложил на карту путь Гольфстрима для использования в сообщении между Соединенными Штатами и Европой. Фрэнсис Гальтон ввел термин антициклон. Гельмут Ландсберг (англ.)русск. ввел в климатологию статистический анализ.

История

Гумбольдт высоко оценил работу Хосе де Акосты по исследованию в области метеорологии и физики и за многие его открытия удостоил звания одного из Основателей Геофизики. В его Истории () впервые появились соображения об изгибе изотермических линий и о распределении тепла в зависимости от широты, о направлении течений и многих физических явлений: различия климатов, активности вулканов, землетрясений, типы ветров и причины их возникновений.

В 1686 году Эдмунд Галлей после путешествия в Южное полушарие составил и опубликовал карту пассатов. Бенджамин Франклин — один из титанов XVIII столетия первым наложил на карту путь Гольфстрима для использования в сообщении между Соединенными Штатами и Европой. Фрэнсис Гальтон ввел термин антициклон. Гельмут Ландсберг (англ.)русск. ввел в климатологию статистический анализ.

Какой климатологией пользоваться?

Вообще говоря, на поставленный вопрос сложно дать однозначный ответ, но попробуем разобраться.

В современных российских нормативных базах и СНиП 23–01–99*, и СП 131.13 330.2012 (Актуализированная редакция СНиП 23–01–99*) позиционируются как действующие. Об этом сказано в поле «Статус» любой из нормативных баз, например, NormaCS и «Техэксперт».

Изучая ситуацию более полно, отмечаем, что статус СНиП 23–01–99* дополнительно подтверждается Распоряжением Правительства Российской Федерации № 1047-р от 21 июня 2010 года «Об утверждении перечня национальных стандартов и сводов правил, в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона “Технический регламент о безопасности зданий и сооружений”».

Так, данным распоряжением утверждается перечень национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона «Технический регламент о безопасности зданий и сооружений». В перечень входит 91 нормативный документ, среди которых под семидесятым номером значатся СНиП 23–01–99* «Строительная климатология». Таблицы 1–5; рисунки 1, 3–6*. Это позволяет говорить о том, что таблицы 1–5 и рисунки 1, 3–6* актуальны по сей день.

Дополнительное подтверждение мы находим в письме Министерства регионального развития Российской Федерации от 15 августа 2011 года №18 529–08/ИП-ОГ «О разъяснении статуса сводов правил — актуализированных СНиПов». Согласно письму статьей 5 Федерального закона от 30 декабря 2009 года №384-ФЗ «Технический регламент о безопасности зданий и сооружений» предусмотрено, что безопасность зданий и сооружений, а также связанных со зданиями и сооружениями процессов проектирования (включая изыскания), строительства, монтажа, наладки, эксплуатации и утилизации (сноса) обеспечивается посредством соблюдения требований Федерального закона и требований стандартов и сводов правил, включенных в том числе и в Перечень национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований данного Федерального закона (утвержденного Распоряжением Правительства Российской Федерации от 21 июня 2010 года № 1047-р).

Статус документа СНиП 23-01-99*
«Строительная климатология»
(Из информационной справочной системы «Техэксперт»)

Тип документа: Нормативно-технический документ.Дата начала действия: 01.01.2000.Опубликован: официальное издание, М.: Госстрой России, ГУП ЦПП, 2003 год.

Статус документа СП 131.13 330.2012 –
«Строительная климатология»
(Актуализированная редакция СНиП 23-01-99*)
(Из информационной справочной системы «Техэксперт»)

Что же касается нового свода правил СП 131.13 330.2012, то дополнительных разъясняющих писем и распоряжений по нему на данный момент не обнаружено. В официальной сводке указано, что данный норматив введен в действие с 1 января 2013 года, то есть относительно недавно, чем и объясняется отсутствие иных официальных документов поверх него.

Кроме того, в ряде других современных нормативов документах в качестве ссылочных документов указывается именно СП 131.13 330.2012 (нередко в контексте «На территории Российской Федерации действует СП 131.13 330.2012»).

Исходя из всего вышесказанного, тем не менее предпочтение следовало бы отдавать более новой, актуализированной версии «Строительной климатологии» — своду правил СП 131.13 330.2012.

Методы

Чтобы сделать выводы об особенностях климата, необходимы многолетние ряды наблюдений за погодой. В умеренных широтах пользуются 25—50-летними трендами, в тропических — менее продолжительными.
Климатические характеристики выводятся из наблюдений над метеорологическими элементами, наиболее важными из них являются атмосферное давление, скорость и направление ветра, температурой и влажностью воздуха, облачность и атмосферные осадки. Кроме этого изучают продолжительность солнечной радиации, длительность безморозного периода, дальность видимости, температуру верхних слоев почвы и воды в водоёмах, испарение воды с земной поверхности, высоту и состояние снежного покрова, всевозможные атмосферные явления, суммарная солнечная радиация, радиационный баланс и многое другое.

Прикладные отрасли климатологии пользуются необходимыми для их целей характеристиками климата:

  • в агроклиматологии — суммы температур вегетационного периода;
  • в биоклиматологии и технической климатологии — эффективные температуры;

Используются также и комплексные показатели, определяемые по нескольким основным метеорологическим элементам, а именно всевозможные коэффициенты (континентальности, засушливости, увлажнения), факторы, индексы.

Многолетние средние значения метеорологических элементов и их комплексных показателей (годовые, сезонные, месячные, суточные и т. д.), их суммы, периоды повторяемости считаются климатическими нормами. Несовпадения с ними в конкретные периоды считаются отклонениями от этих норм.

Литература

  • Астапенко П.Д. Вопросы о погоде. — Л.: Гидрометеоиздат, 1982. — 240 с.
  • Беттен Л. Погода в нашей жизни. — М.: Мир, 1985. — 340 с.
  • Борисенков Е.П. Климат и деятельность человека. — М.: Наука, 1982. — 223 с.
  • Будыко М.И. Глобальная экология. — М.: Мысль, 1977. — 326 с.
  • Будыко М.И., Голицын Г.С., Израэль Ю.А. Глобальные климатические катастрофы. — М.: Гидрометеоиздат, 1986. — 158 с.
  • Вайсберг Дж. Погода на Земле. — М.: Мир, 1980. — 248 с.
  • Войнич А., Херцен Э. Одна ласточка погоды не делает. — М.: Мир, 1985. — 227 с.
  • Литиницкий И.Б. Изобретатель — природа. — М.: Знание, 1986. — 208 с.
  • Мигул Ю.Г. Космос и погода. — М.: Недра, 1986. — 144 с.
  • Монин А.С., Шишков Ю.А. История климата. — Л.: Гидрометеоиздат, 1979. — 407 с.
  • Стрижев А. Календарь русской природы. — М.: Московский рабочий, 1981. — 224 с.
  • Форрестер Ф. Тысяча и один вопрос о погоде. — Л.: Гидрометеоиздат, 1968. — 338 с.
  • Ясаманов Н.А. Древние климаты Земли. — Л.: Гидрометеоиздат, 1985. — 295 с.
  • Ясаманов Н.А. Популярная палеография. — М.: Недра, 1986. — 107 с.
  • Ясаманов Н.А. Занимательная климатология. — М.: Знание, 1989. — 191 с.

Журналы и бланки

БухгалтерияОхрана труда и техника безопасностиМЧСКадровая работа: Журналы, бланки, формыЖурналы, бланки, формы документов для органов прокуратуры и суда, минюста, пенитенциарной системыЖурналы, бланки, формы документов МВД РФКонструкторская, научно-техническая документацияЛесное хозяйствоПромышленностьГостиницы, общежития, хостелыСвязьЖурналы и бланки по экологииЖурналы и бланки, используемые в торговле, бытовом обслуживанииЖурналы по санитарии, проверкам СЭСЛифтыКомплекты документов и журналовНефтебазыБассейныГазовое хозяйство, газораспределительные системы, ГАЗПРОМЖКХЭксплуатация зданий и сооруженийЖурналы и бланки для нотариусов, юристов, адвокатовЖурналы и бланки для организаций пищевого производства, общепита и пищевых блоковЖурналы и бланки для организаций, занимающихся охраной объектов и частных лицЖурналы и бланки для ФТС РФ (таможни)Журналы для образовательных учрежденийЖурналы и бланки для армии, вооруженных силБанкиГеодезия, геологияГрузоподъемные механизмыДокументы, относящиеся к нескольким отраслямНефтепромысел, нефтепроводыДелопроизводствоЖурналы для медицинских учрежденийАЗС и АЗГСЭлектроустановкиТепловые энергоустановки, котельныеЭнергетикаШахты, рудники, метрополитены, подземные сооруженияТуризмДрагметаллыУчреждения культуры, библиотеки, музеиПсихологияПроверки и контроль госорганами, контролирующими организациямиРаботы с повышенной опасностьюПожарная безопасностьОбложки для журналов и удостоверенийАптекиТранспортРегулирование алкогольного рынкаАвтодороги, дорожное хозяйствоСамокопирующиеся бланкиСельское хозяйство, ветеринарияСкладСнегоплавильные пунктыСтройка, строительствоМетрологияКанатные дороги, фуникулерыКладбищаАрхивыАттракционыЖурналы для парикмахерских, салонов красоты, маникюрных, педикюрных кабинетов

Литература

  • Астапенко П.Д. Вопросы о погоде. — Л.: Гидрометеоиздат, 1982. — 240 с.
  • Беттен Л. Погода в нашей жизни. — М.: Мир, 1985. — 340 с.
  • Борисенков Е.П. Климат и деятельность человека. — М.: Наука, 1982. — 223 с.
  • Будыко М.И. Глобальная экология. — М.: Мысль, 1977. — 326 с.
  • Будыко М.И., Голицын Г.С., Израэль Ю.А. Глобальные климатические катастрофы. — М.: Гидрометеоиздат, 1986. — 158 с.
  • Вайсберг Дж. Погода на Земле. — М.: Мир, 1980. — 248 с.
  • Войнич А., Херцен Э. Одна ласточка погоды не делает. — М.: Мир, 1985. — 227 с.
  • Литиницкий И.Б. Изобретатель — природа. — М.: Знание, 1986. — 208 с.
  • Мигул Ю.Г. Космос и погода. — М.: Недра, 1986. — 144 с.
  • Монин А.С., Шишков Ю.А. История климата. — Л.: Гидрометеоиздат, 1979. — 407 с.
  • Стрижев А. Календарь русской природы. — М.: Московский рабочий, 1981. — 224 с.
  • Форрестер Ф. Тысяча и один вопрос о погоде. — Л.: Гидрометеоиздат, 1968. — 338 с.
  • Ясаманов Н.А. Древние климаты Земли. — Л.: Гидрометеоиздат, 1985. — 295 с.
  • Ясаманов Н.А. Популярная палеография. — М.: Недра, 1986. — 107 с.
  • Ясаманов Н.А. Занимательная климатология. — М.: Знание, 1989. — 191 с.

Электронная климатология

Данный сервис позволяет быстро определять актуальные параметры А и параметры Б для любого из перечисленных в строительной климатологии города как для теплого, так и для холодного периодов года, а также абсолютные минимумы и максимумы для этих регионов. Для этого на сайте предусмотрен блок «Определение параметров А, параметров Б и экстремумов» (рис. 1).

Рисунок 1 Быстрое определение параметров А и параметров Б в интернет-сервисе «Электронная климатология» (

Кроме того, в блоке «Полные таблицы климатологии» доступны полные версии таблиц с климатическими параметрами холодного и теплого периодов года, представленные в более компактном и удобном для восприятия виде (рис. 2).

Рисунок 2. Таблицы климатологии со всплывающими подсказками в интернет-сервисе «Электронная климатология» (

О строительной климатологии

Как можно судить из открытых источников, первым нормативным документом, касающимся строительной климатологии, был опубликованный в 1962 году СНиП II-А.6–62 «Строительная климатология и геофизика. Основные положения проектирования». Сообщалось, что документом надлежит руководствоваться при составлении схем и проектов районной планировки, проектов планировки и застройки населенных мест, составлении технико-экономических обоснований выбора площадок для строительства, проектировании генеральных планов промышленных предприятий, производстве технических изысканий, составлении паспортов участков для строительства, а также при проектировании зданий и сооружений.

Данный норматив претерпел несколько обновлений. И в результате путь развития строительной климатологии выглядит так:

  1. 1962 год. СНиП II-А.6–62 «Строительная климатология и геофизика. Основные положения проектирования».
  2. 1972 год. СНиП II-А.6–72 «Строительная климатология и геофизика».
  3. 1982 год. СНиП 2.01.01–82 «Строительная климатология и геофизика».
  4. 1999 год. СНиП 23–01–99* «Строительная климатология».
  5. 2012 год. СП 131.13 330.2012 «Строительная климатология (Актуализированная редакция СНиП 23–01–99*)».

Безусловно, первые три СНиП в данном списке уже недействительны, так как были последовательно заменены соответствующими обновленными изданиями. Обновление выполнено и для СНиП 23–01–99*, однако, как можно судить из официальных документов, действующими оказались оба норматива — и уже, казалось бы, устаревший, и новый.

Справедливости ради, вспоминая историю источников расчетных климатических параметров, следует упомянуть и СНиП 2.04.05–86 «Отопление, вентиляция и кондиционирование», который за получением этих самых параметров не отсылал к какому-либо иному нормативному документу, а непосредственно сам содержал их (в Приложении 7). Отметим, что это было весьма удобно, так как в документе были представлены непосредственно только те данные, что используются в расчетах, а потому и поиск нужных величин был существенно упрощен.

Однако уже в обновленной версии СНиП 2.04.05–86 — СНиП 2.04.05–91 (2000) — появились ссылки на СНиП 23–01–99*. Такое же положение дел сохранилось и в СНиП 41–01–2003.

А и Б сидели на трубе

Для расчета систем вентиляции, отопления и кондиционирования используются так называемые параметры А и параметры Б для теплого и холодного периодов года. Их использование регламентируется пп. 5.10–5.11 СНиП 41–01–2003 «Отопление, вентиляция и кондиционирование». Согласно данным пунктам:

  • в помещениях жилых, общественных, административно-бытовых и производственных зданий следует обеспечивать в пределах расчетных параметров наружного воздуха для соответствующих районов строительства по СНиП 23–01:
    • параметров А — для систем вентиляции и воздушного душирования для теплого периода года;
    • параметров Б — для систем отопления, вентиляции и воздушного душирования для холодного периода года, а также для систем кондиционирования для теплого и холодного периодов года;
    • параметры наружного воздуха для переходных условий года следует принимать 10 °C и удельную энтальпию 26,5 кДж/кг.
  • для зданий сельскохозяйственного назначения, если они не установлены специальными строительными или технологическими нормами, следует принимать:
    • параметры А — для систем вентиляции и кондиционирования для теплого и холодного периодов года;
    • параметры Б — для систем отопления для холодного периода года.

Как показал опыт, определение параметров А и параметров Б долгое время вызывало смуту в умах проектировщиков. Причиной явился тот факт, что «родной» СНиП 41–01–2003 отправлял за ними в СНиП 23–01, а в таблицах этого СНиП вместо привычных колонок «Параметры А» и «Параметры Б» были температуры обеспеченностью 0,92, 0,94, 0,98 и так далее.

Разгадка заключалась в таблице 6 (она же таблица 10.1 в СП 131.13 330.2012), которая и давала ответ, какие колонки таблиц с климатическими параметрами теплого и холодного периодов года принимать за параметры А, а какие за параметры Б. Для удобства инженеров-проектировщиков в рамках данной статьи приведено содержимое таблицы 10.1 из СП 131.13 330.2012 (табл. 1).

Таблица 1. Климатические параметры для проектирования отопления, вентиляции и кондиционирования (Таблица 10.1 из СП 131.13 330.2012)

* Принимая температуру воздуха параметра А и относительную влажность воздуха по таблице 3.1, граф 16.
** Принимая температуру воздуха параметра Б и относительную влажность воздуха по таблице 3.1, граф 16.

Книги

Нормативные правовые актыОбщественные и гуманитарные наукиРелигия. Оккультизм. ЭзотерикаОхрана труда, обеспечение безопасностиСанПины, СП, МУ, МР, ГНПодарочные книгиПутешествия. Отдых. Хобби. СпортНаука. Техника. МедицинаКосмосРостехнадзорДругоеИскусство. Культура. ФилологияКниги издательства «Комсомольская правда»Книги в электронном видеКомпьютеры и интернетБукинистическая литератураСНиП, СП, СО,СТО, РД, НП, ПБ, МДК, МДС, ВСНГОСТы, ОСТыЭнциклопедии, справочники, словариДомашний кругДетская литератураУчебный годСборники рецептур блюд для предприятий общественного питанияЭкономическая литератураХудожественная литература

Бизнес и финансы

БанкиБогатство и благосостояниеКоррупция(Преступность)МаркетингМенеджментИнвестицииЦенные бумагиУправлениеОткрытые акционерные обществаПроектыДокументыЦенные бумаги — контрольЦенные бумаги — оценкиОблигацииДолгиВалютаНедвижимость(Аренда)ПрофессииРаботаТорговляУслугиФинансыСтрахованиеБюджетФинансовые услугиКредитыКомпанииГосударственные предприятияЭкономикаМакроэкономикаМикроэкономикаНалогиАудитМеталлургияНефтьСельское хозяйствоЭнергетикаАрхитектураИнтерьерПолы и перекрытияПроцесс строительстваСтроительные материалыТеплоизоляцияЭкстерьерОрганизация и управление производством

Что изучает наука климатология

Климатология изучает анализ причин климатических различий и изменений и их практические последствия. Наука рассматривает те же атмосферные явления, как и в метеорологии, но стремится также определить медленно действующие воздействия и долгосрочные внешние изменения, в том числе циркуляцию вод океанов и небольшие, но измеримые изменения в интенсивности солнечного излучения.

Погода представляет состояние атмосферы в течение короткого периода времени. Например, мы говорим о сегодняшней погоде или на этой неделе. Климат представляет собой композитную изо дня в день погоду в течение длительного периода времени.

Климатология это наука о обнаружении и объяснении последствий изменения климата таким образом, чтобы общество могло планировать свою деятельность, проектировать здания и объекты инфраструктуры и предвидеть последствия неблагоприятных условий. Хотя наука климатология не погода, она оперирует теми же терминами, как температура, осадки, ветер и солнечная радиация.

Для чего нужна  строительная климатология

Строительная климатология важная часть для обоснования проектных строительных решений учитывая безопасность и энергоэффективность:

  • дома должны проектироваться и строиться в зависимости от внешних условий
  • сельское хозяйство строит и создает планы, основанные на длине вегетации от весны до первых заморозков
  • коммунальные компании рассчитывают максимальную потребность отопления в зимний период и максимальная потребность для охлаждения в летнее время.

Методы

Чтобы сделать выводы об особенностях климата, необходимы многолетние ряды наблюдений за погодой. В умеренных широтах пользуются 25—50-летними трендами, в тропических — менее продолжительными.
Климатические характеристики выводятся из наблюдений над метеорологическими элементами, наиболее важными из них являются атмосферное давление, скорость и направление ветра, температурой и влажностью воздуха, облачность и атмосферные осадки. Кроме этого изучают продолжительность солнечной радиации, длительность безморозного периода, дальность видимости, температуру верхних слоев почвы и воды в водоёмах, испарение воды с земной поверхности, высоту и состояние снежного покрова, всевозможные атмосферные явления, суммарная солнечная радиация, радиационный баланс и многое другое.

Прикладные отрасли климатологии пользуются необходимыми для их целей характеристиками климата:

  • в агроклиматологии — суммы температур вегетационного периода;
  • в биоклиматологии и технической климатологии — эффективные температуры;

Используются также и комплексные показатели, определяемые по нескольким основным метеорологическим элементам, а именно всевозможные коэффициенты (континентальности, засушливости, увлажнения), факторы, индексы.

Многолетние средние значения метеорологических элементов и их комплексных показателей (годовые, сезонные, месячные, суточные и т. д.), их суммы, периоды повторяемости считаются климатическими нормами. Несовпадения с ними в конкретные периоды считаются отклонениями от этих норм.

Ученые климатологи

Для того чтобы понять все это, ученые должны воссоздать модель, потому что есть только одна Земля – создается компьютерная модель. Климатологи используют мощные компьютеры для построения программы, основанные на физике климатической системы. Эти модели позволяют ученым делать прогнозы и проверить гипотезу о том, какие процессы влияют на климат.

При построении таких моделей, климатологи начинают с фундаментальной науки: термодинамических принципов, орбитальной динамики, взаимодействия между инфракрасным излучением и двуокисью углерода и других газов, а также других подобных факторов, влияющих на основной баланс тепла на входе и выходе в атмосферу. Они сочетают в себе реальные измерения данных, таких как текущая концентрация парниковых газов в атмосфере. Они проверяют гипотезы о том, какие процессы влияют на какие явления. Затем ученые могут увидеть, как полученные программы предсказывают климатическую систему. Когда предсказания совпадают с наблюдениями считается, что модель подтверждена и лежит в основе допущений. Когда прогнозы расходятся от того, что наблюдается, климатологи пересматривают свои гипотезы. С помощью такого процесса проб и ошибок, они способны обеспечить, что их гипотезы становятся все более и более точными и надежными.

Такие модели могут быть применены к Земле в целом или в различных регионах планеты. Чтобы увидеть, как изменение климата влияет на различные части Земли, ученые-климатологи разбивают изучение на более мелкие части, рассчитывая, как небольшие участки поверхности Земли реагируют на Солнце и парниковые газы, а затем соединяют эти мелкие детали вместе, основанные на измерениях как атмосфера и океан взаимодействуют между собой.

Для того чтобы обеспечить точность моделей при проектировании будущей тенденции изменения климата, программы часто работают в обратном направлении во времени, чтобы прошлые изменения климата сравнить с климатическими наблюдениями. Модели в рамках этого процесса стали удивительно точными и дают климатическим исследованиям уверенность, что будущие прогнозы являются надежными.

Ученые могут сделать эксперименты с этими программами, что они не могут сделать на планете. Они могут установить атмосферу соответствующую условиям век назад, и посмотреть, соответствуют ли предсказание модели.  Они могут устанавливать модели в соответствии с условиями миллионы лет назад, чтобы лучше понять, как в прошлом климат изменился. Это позволяет убедиться в том, что модели являются точными, для точной настройки выходного сигнала. Они также могут устранить последствия человеческой деятельности и посмотреть, какие изменения климата они наблюдают по предсказанной гипотезе.  Эти модели показывают, что человеческая деятельность, особенно сжигание ископаемого топлива и в результате выброс углекислого газа в атмосферу существенно изменили климат на планете. Во многих различных видах климатических исследований имеется последовательный результат в том, что люди производят большую часть изменения климата, которые мы наблюдали в прошлом веке.

Один недавний анализ: по оценкам, по меньшей мере, три четверти изменений климата с 1950 года связаны с деятельностью человека.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector